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1. Introduction 

There is a number  of systems which can be treated approximately as quasi- 
one-dimensional crystals. Some of them such as the D N A  molecules and poly- 
peptide chains, are of a great practical interest. Others, such as infinite polyene 
chains, are often used as shooting-range for testing different theoretical construc- 
tions which can not be studied in the three-dimensional case (for instance, see 
Ref. [1]). These facts cause a great interest for studying such systems. 

In the present paper  we obtain some general relations concerning the energy 
band structure of quasi-one-dimensional crystals with a screw symmetry (Section 2). 
These relations are applicable to exciton, phonon or electron energy bands. In 
Section 3 we use the results obtained for studying the energy bands of an infinite 
polyene chain within the tight binding approximation.  

The problem of the electronic structure of conjugated chains is under con- 
sideration during a long time. The main results obtained by the well known 
re-electronic methods are reviewed in Ref. [1]. One of these results concerns the 
fact that a simple band theory leads to the metallic properties of an infinite polyene 
chain with equal C - C  bond lengths or, alternatively, the Hartree-Fock energy 
levels of ~-electrons in this system form a half-filled zone. In order to obtain a 
forbidden band between the energy levels occupied in the ground state and vacant 
levels one must perturb the initial symmetry of the chain [-2, 3] or take into account 
electron correlations [4, 5] or, at last, consider both effects simultaneously [6]. 
Unlike these results of ~-electronic treatments, the SCF LCAO C N D O  [7] and 
ab initio [-8] calculations give other than zero value of the forbidden gap between 
a conduction and valence bands of the regular polyene chain with equal C C 
distances. We explain this discrepancy in Section 3. 
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2. The Energy Band Structure of One-Dimensional Crystals 
with a Screw Symmetry 

Let us suppose that the wave function of a crystal state with the wave number k 
in the 1-th energy band is given by 

A 

~pt(k) = ~ Ql(k)~oz(k),  (1) 
.~=1 

where - ~  _< k < n. The functions {(pz(k)} form an orthonormalized basis set. The 
explicit form of ~oz(k) is non-essential for the present. But we shall assume that 

Tan (p.~(k) = e *k" q)~ (k), (2) 

where Ta, is the operator of the translation by the vector na, a is one-dimensional 
lattice constant and n = 0, + 1, _+ 2, .... For  instance, we can see such q0~(k) as 

t 
q)z(k)= ] / ~  ~eikmXm~m (3) 

where the letter m numbers different elementary cells, 2 labels the different basis 
functions Xm;~ with the same m. M ~ oe is the total number of unit cells, k -- 2re j iM.  
In the theory of molecular excitons the functions Xmz are treated as the states, of 
a whole crystal with an excitation on the m2-th molecule [9]. As far as it concerns 
the SCF tight binding approximation, q0x(k) is a Bloch orbital and Xma is the 
2-th AO within the m-th elementary cell [7, 8, 10-13]. The values of C~z(k ) are 
defined by the system of equations 

dE 
dC.z(k ) - Hx~(k)C~,,(k) = eg(k)C x~(k) , (4) 

where 2 =  1, 2 . . . . .  A; E is the total energy, Hx,(k) are the matrix elements of 
Hamiltonian. Solving Eqs. (4) we obtain A eigenvalues ~z and A eigenvectors 
{Cll, C21 . . . .  Cal} for each the value of k = ( -  re, re). The eigenvalues el(k) form A 
Brillouin zones. Moreover, el(k) is a continuous function of k [10]. 

Now we consider the one-dimensional crystal possessing a screw symmetry 
axis of the N-th order C N (N = 2, 3, ...). We assume that the functions (px(k) can be 
distributed between F = A / N  groups {Pay} in such a way that 

((pay[ TR~ Iq~bp} = 6fptab, (5) 

where TR, is the operator of rotation about CN. This operation can be treated as 
the translation by one N-th of the lattice constant and successive rotation by 
2reiN, or vice versa. If Eq. (5) is valid we can transform the initial basis set {(p~} 
= {(p,y} so that 

Tar [q~/(k)] = ___ q~_~,/(k), (a ~ 1) 
TR~ [~0 ir = _+ eik q~Ny(k). (6a) 

It will be assumed that the sign in the right of Eqs. (6a) depends on the index 
f only. In terms of the functions X,~,~r Eqs. (6a) can be written as 

TR~ X ....  r = +- Xm'"- ~'r ' (6b) 

T R ~ X m , 1 ,  f = -[- X m _  I,N, f . 
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TI m Using Eqs. (6) we can cons t ruc t  the eigenfunctions of  the opera tors  (RN) 
(m = 0, 1, 2 . . . .  ). It  can be shown that  the functions 

N 

f~(k)= ~ So~(k)~oos(k) 
a = l  

satisfy the equat ions  

if 
(T,j"f ,(k) = (;ok~)~f,.(k) (7) 

1 k 
e i~ ki ~' Oki = - -  + 2 i n ~ N ,  S~(k) = ~ -  

N 

2ki = exp (iOkl) . 

( i = 0 ,  1,2, . . . N -  1) 

(8) 

The functions f~ are o r thonormal ized .  In the case of  one dimension the opera to r  
(TRy,)" does c o m m u t e  with the t rans la t ion ope ra to r  Ta,. As far as the Hami l ton ian  
commutes  with all the symmet ry  t ransformat ions ,  we can rewrite Eq. (1) as the 
following 

tp~(k) = ~ , ( k )  ~, So~(k) Ur (9) 
a f  

So, the n u m b e r  of independent  values Czl = Cas,t ~ in Eqs. (4) is reduced by N :  
times due to the screw symmetry .  Because of this, there is a dependence between 
eigenvalues e~i(k ). (i = O, 1, 2 . . . . .  N - 1) for all the values of  k and t. 

Using Eq. (9) we obta in  for the eigenvalues of  Eqs. (4) 

N 

ezi(k)= ~ S*i(k)Sbi(k)Fab(t , k ) ,  (10) 
a,b = 1 

where 
F 

F~b(t, k ) =  ~, Ufft(k ) Upt(k)H~f,bp(k ) . (11) 
p , f = l  

N o w  we ment ion  the following proper t ies  of  Eqs. (4) [10] 

e~(k) = e~(k) = er ( -  k) = ~r' (k + 2~).  (12) 

As a consequence,  the mat r ix  F(t,  k) should satsify the equat ions 

Fab(t , k) = F~a(t, k) = F~b(t, k + 2~) = V*b(t, -- k) (13) 

Let  us s tudy the s tructure of  bands  eta(k). First  of all we consider such pairs 
eti and etj that  i + j  = N m  (m = 0, _+ 1 . . . .  ). Then,  O_g,j = Oki + 2~m  and from Eqs. 
(7)-(13) it follows that  

etj ( - k) = eti(k), (i + j  = Urn) (14) 

So, the graphs  ofeti(k)  and e~,u_i(k) intersect at  the point  k = 0. The n u m b e r  of  
doubly  degenerated eigenvalues equals to (N - 2)/2 for even N and (N - 1)/2 for 
odd N. I f j  r N - i then eti(0) ~ etj(O). Using Eq. (10) we can conclude that  a m o n g  
e,(k = 0) (i = 0, 1, 2, . . . ,  N - 1) there are n o different numbers  where n o = (N + 2)/2 
(N is even) or n o = (N + 1)/2 (N is odd). Alternat ively speaking, the initial level e~ 
splits up into n o levels. In the case of  molecular  excitons this effect is known as 
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Davydov splitting. This splitting is caused by the presence of N identical molecules 
within unit cell (see Ref. [-9]). 

Using Eqs. (7)-(13) we can write also that 

gtj{--n)=g, ti(n) ( j = i +  1 + Um) 
(15) 

~',j(k = n -  O) = ~; i (k  = - n + 0 ) ,  

where e~(k)=det(k)/dk. Equations (14) and (15) lead to 

~t,N - i -  1 (re) = ~t,i(re) , 
(16) 

gt,N + l - i ( -  re) = ~t , i (--  re)" 

Thus, each of the energy bands ea(k) (except the case when i =  N _  1 -  i) 
contacts with an other band at the point k =  -t-re. It follows from Eqs. (15)-(t6) 
that there are n= different values among eti(k) (i = O, 1 . . . . .  N -  1), where n= = N/2  
(N is even) or n= = (N + 1)/2 for odd N and k = _+ re. The results obtained above 
show also that we can build up a fictitious band et(k) from N bands e,i(k). The 
continuous function et(k) can be constructed in the following manner. Let us 
introduce a wave number q = kiN. According to Eqs. (1), (3), (8) and (9) we write 

where 

re 
~ptj(k) = ~p,(q + 2rej/N), Iql ~ ~ -  (17) 

1 
~vt(q) = ~ Ui,(k)X, ,afe iqt"N+a) (lS) 

a,f  ,n 

For - n ___< q = n we define ~,(q) as 

tptj(k), ( 2 j -  1)n =< q < (2j + 1)n 
N N 

~t(q) = (2j + 1)n =<'q =< (2j - 1)n 
[ ~pt'N-j(k)' N N 

(19) 

Due to Eq. (10) the corresponding energy levels are given by 

~e,j(k) , (20) 
st(q) = [et,s_ j(k) " 

Using the expression (19) instead of (1) we just take into account the screw 
symmetry. Besides, the order of the secular problem (4) is reduced by N times. 

Equations (14)-(20) are valid in general. One can use them for studying 
exciton, phonon, electron or other energy bands, of one-dimensional crystals with 
a screw symmetry. 

In order to illustrate the relations given above we consider now some examples. 
Let us suppose that one-dimensional crystal possesses the screw axis of the 6-th 
order. For sake of simplicity we consider the case F = 1 and use the approximation 
of the nearest neighbours: 

(XmalHIXnb)=fl(~Snm6a,b_X +an+,,m6a, lC3b,N+an_,,mr (21) 



Energy Band Structure of Polymer Chains 143 

From Eqs. (14)-(16) it follows that 

(~pj(k)l H I~;i(k')) -- bkk' bueJ(k), 
where 

ej(k) = 2fl cos 0ki, (22) 

and ~u is a Kroneker delta-symbol. In the case under consideration Eqs. (14)-(16) 
give 

t l ( -  k) = ts(k), t 2 ( -  k) = t4(k) ,  

to(k) = t o ( -  k), t 3 ( -  k) = t3(k) ,  
(23) 

to(~) = t5 (~), t l  (~) = t4(Tc), 

82(7~ ) = t3(7~), t0 ( - -  7g)= t 1 ( -  Tg), 

etc. Eq. (22) depends on the form of matrix elements (21), but Eqs. (23) are valid in 
general. From the energy bands (22) we can construct a new zone t(q)= 2fl cos q 
( -  ~ =< q =< ~z) in accordance with Eq. (20). 

There is a number of the SCF tight binding calculations for regular polymer 
chains with the screw axis C2. The energy band structure ofpolyenes (CH-CH=)M 
is described in Ref. [7] (within the CNDO approximation) and Ref. [8] (ab initio). 
The energy bands of polyethylenes (CH2-CH2-)M are given in Ref. [14]. In the 
case of the screw axis of the second order Eq. (16) has the form 

et,0(- re) = et , l ( -  re). (24) 

This effect can be easily observed on Fig. 3 in Ref. [14] and, as far as it concerned 
of polyene zones of the a-type, on Figs. 1 in Refs. [7, 8]. The structure of zc-electron 
energy bands of polyenes is discussed in detail in Section 3. 

3. Energy Bands of an Infinite Polyene Chain 

In this section we consider the energy band structure of the infinite polyene 
chain with equal C-C bond lengths (Fig. 1). For this purpose we shall use the SCF 
tight binding theory described in details elsewhere [10-13, 7, 8]. In the case of 
polyenes Bloch functions of the form (1) can be subdivided into two subsets: the 
functions of a-type and the function of re-type. This a-re separation enables one to 
consider the re-electron subsystem of polyenes neglecting its a-electrons. We can 
note also that the lowest vacant and highest occupied energy levels in polyenes 
correspond to crystal orbitals of the re-type. The CNDO and ab initio calculations 
confirm this statement (see Refs. [7, 8]). So, to answer the question put in the 
Introduction it is sufficient to consider the ~-electron energy bands of a regular 
polyene chain. 

A polyene unit cell (Fig. 1) consists of two CH fragments labelled below by the 
indices A and B respectively. Using the minimal AO basis we can write re-electron 
functions in the form 

~,(k) = CA,(k)~oA(k) + CB,(k)q)B(k) , (25) 

where q0x(k) are defined by Eq. (3) if Xm~ in (3) means the 2pz orbital of the m2-th 
carbon atom (Z-axis is normal to the plane of the chain). We shall use the CNDO 
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Fig. 1. The schemat ic  d i a g r a m  of an infinite po lyene  chain. The letters m - 1, m, m + ! label the cor- 
r esponding  uni t  cells; a is the lat t ice constant .  W h e n  all C - C  bond  lengths  are equa l  this sys tem pos- 
sesses the screw axis of the second order  - C z which runs  th rough  the centers  of C - C  bonds  

approximation for th e matrix elements of Hamiltonian. According to this approach 
only the following matrix elements do not vanish: the integrals of the Coulomb 
repulsion 

7,nZ,.~'---- (X~z(rl)[ Ira -- r2l- 1 [rnZ,v(r2)> (26) 

and the core integrals 
fim~,.z' = (X,.a(r)[ h(r)[X.a,(r)), (27) 

where h(r) is the operator of the kinetic and potential energy of a re-electron in 
the a-core. We shall suppose also that 

f lm). ,nU = f l  < 0 (28) 

when the m2-th and n2'-th atoms are the nearest neighbours, and that 

[3m~,.~, = 0:5m. 5~;, (29) 

in other cases. We shall assume also that the re-electronic charge densities 

2 Z [C.~l(k)[ 2 = 1 (30) 
k,l 

on all the carbon atoms of the chain. It is easy to verify that under this assumption 
the o--re separation is strictly valid within the CNDO approximation. Indeed, the 
energy expression of the CNDO method does not contain the exchange integrals 
between crystal orbitals of o-- and re-types. In the other hand, the Coulomb terms 
can be put equal to constants due to Eq. (30). As a consequence, Eq. (4) for the 
orbitals of re-type does not contain the values C~ts(k ) where ls refers to a o.-type 
zone. 

Using the expressions (25)-(30) we can write Eqs. (4) in the form (the indices 
of zones are omitted) 

CB(k ) [fl(t + e -ik) - a(k)] = Ca(k ) [e(k)+ W(k)], 
(31) 

CA(k) [fi(1 + e 'k) - a*(k)] = CB(k ) [8(k) + W(k)], 

where 

W(k)= 1 i V.~a(k-q)lC(q)12dq, 
re 

a(k)= 1 i VAB(k--q)C*(q)CA(q)dq, 
re - g  

Vzz,(k ) = ~ ik. (2 = A, B). 7oz,nz.e �9 
n 

(32) 
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From Eq. (31) we obtain for the eigenvalues 

e~,2(k) = - W(k)-T- {4fi2 cos2k/2 + la(k)12-2f iRe[a(k)(1  + exp(ik/2))]} 1/2 (33) 

The infinite polyene chain with equal C -C  bond distances possesses the screw 
axis C2 (see Fig. 1). From Eq. (24) it follows that each of the energy bands contacts 
with an other band at the points k = +_ 7c. Taking into account the fact that there 
is one re-electron on each of carbons, we can conclude that re-levels of the chain 
under consideration form a half-filled Brillouin zone. So, the SCF tight binding 
theory leads to metallic properties of an infinite polyene chain with equal C -C  
bonds. 

Now we obtain the values of el,2(k) for ~r-bands in an explicit form. Equa- 
tions (8)-(9) give 

CBj(k) = C Aj(k) exp (iOkj) = +_ C Aj(k) e ik/2 �9 (34) 

Substituting Eq. (34) into (31) we can write 

el,2(k) = - W(k) -T- [2fi cos (k/2) - e ~k/2 a(k)]. (35) 

In order to evaluate the Coulomb interaction in the system we suppose that 

7m~:,~ ,= 71~m,6~ ' + 72 (1 - CSm, C~a, ) (36) 
P 

where p is the projection on the C2 axis (Fig. 1) of the distance between the m2-th 
and n2'-th atoms in a/2 units. Simple calculations show that the difference between 
this approximation and more precise expressions is essential if the m;:th and n~-th 
atoms are the nearest neighbours. But the errors in the value of 712 can be com- 
pensated by the reevaluation of the value of fi (Ref. [5]). Using the approximation 
(36) we obtain 

=c~+ ~ 1  +2721n2 ~ 1 , 2 ( k )  2 

+/2 coskj2§ IL(4+ )+L(4  37, 

where L(x) is a Lobachevski function defined as (Ref. [15]) 

x 

L(x) = - ~ &ln  cos t.  (38) 
o 

Deriving Eq. (37) we take into account the relations (Ref. 1-15]) 
co 

Z - -  cosnx = - {ln [2(1 - cosx)]}/2, (39) 
n = l  F/ 

_ _ l  cos(2n - 1)x = (ln c t g 2  ) / 2 .  
n=l 2 n - 1  
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According to the results obtained in Section 2 we can perform the calculation 
of the ej(k) in the alternative way. Namely, we can introduce a wave number 
q = k/2 and consider the chain with one CH fragment per unit cell. In this case, 
instead of Eq. (25), one can write down 

1 
~P(q) = 2]/~M ~, X"eiq" 

and Eqs. (4) lead to the following expression ( - rc  < k < re) 

e(k)=2[3cosk+c~+ 7~2 2M ~ o n-1 ei,(k_k, ) . (40) 

It can be shown that in accordance with Eqs. (20) 

~(q=k/2)=ea(k)' e( q= k ) - ~- + ~ signk = e 2 ( k  ) . (41) 

One can see also that el,2(k) satisfy Eqs. (24). The following relation 

el(k) = - e2(k) + const 

known as the pairing theorem is a consequence of the approximations (27)-(29). 
It follows from the expression (37) that the Coulomb repulsion increases the 
widths of bands et,2(k ) by the value of 

2~2g L ( 2 ) - 2 L ( 4 )  = 272Grc (42) 

where G is a Catalan constant (G = 0.91596...). Using Eqs. (37) and (38) we can 
obtain also that 

Idet,2(k)/dkJ~oe when k--*_+rc. (43) 

It follows from Eq. (43) that the density of states which is proportional to 
[de/dk]-1 vanishes on the Fermi surface. This effect of the Coulomb repulsion 
is well known for three dimensional crystals (for instance, see Ref. [16]). 

The K-electron energy bands obtained for regular polyene chains in Refs. [7, 83 
do not satisfy Eq. (24): 

Ae = el(7~ ) = e2(~ ) r 0 .  (44) 

Now we try to elucidate the origin of this inexactitude. This problem is also 
discussed in Refs. [17, 18]. 

Solving numerically Eqs. (4) one must truncate infinite series of the Coulomb 
integrals. Usually, such sums as in (32) are taken over a finite number of elementary 
cells. But, cutting off the interaction in such a way we disturb the symmetry 
invariance of the effective Hamiltonian under rotation around a screw axis. 
Indeed, such a rotation redistributes the atoms of the chain among the unit cells: 
the mA-th atom remains in the m-th cell and mB-th atom gets into the (m + 1)-th 
cell (see Fig. 1 and Eqs. (6b)). As a consequence, the functions of the form (34) are 
not self-consistent and, generally speaking, the eigenvalues el(k) defined from 
Eq. (31) will not satisfy Eq. (24). Equation (31) can give a nonzero value of the 
energy gap (44) when a(~) r 0. 
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To illustrate this statement, we consider an example. Let us take into con- 
sideration only the interaction of the neighbouring unit cells. Using Eqs. (32), 
(34) and (36) we obtain 

v ~ ( k )  = VBB(k) = (~2 cos  k ) /2 ,  

VAl~(k)=72(l+e_ik + 1 ik~ ~ - e  ) ,  (45) 

k 1 i3k/2~ a(k) = 4yz~ exp ( -  ik/2) 2 cos ~ - ~- e ) .  

We can see that the value of a(k)e ik/2 is complex. Therefore, the eigenvalues 
defined by Eq. (35) are not real, and the functions (34) are not self-consistent 
within the approximation (45). 

Let us evaluate how the band gap (44) depends on the range of interaction. 
We do this for two cases. When the functions CA,~(k) satisfy Eq. (34) we obtain 

const 
Ae(n) = 2(a 2 + 2alfl[) 1/2 ~ - -  (46) 

n 

where a = a(Tz) = 43)2/(rcn2), the letter n in Eq. (46) means the range of interaction 
in a/2 units: If we take into account the interaction of the m-th cell with (m_+ 1)-th, 
.... (m _+ p)-th cells, n = N p  + 1 = 2p + 1. 

When, instead Eq. (34), CB~(k)= -Cal (k ) ,  the value of the gap (44) does not 
depend on n and equals Ae(n = 1). The self-consistent value of "A{ should satisfy 
the relation 

A~(n) < A-~(n) < Ag(n = 1), 

since due to Eqs. (31) [CAl(k)[ = I CBI(k)[. Thus, the gap value decreases slower than 
1In when n increases. On the other hand, numerical results of calculations change 
approximately as 1In - 1/(n + 1) ~ 1In 2 when we increase the number of interacting 
unit cells by one. As a result, the criterion of the convergence based on the com- 
parison of the results for two successive values of p = (n - 1)/2 can be wrong. 

The results obtained in Refs. [7, 8] show that re-electron bands of polyenes 
~ (k=  re) are especially sensitive to such symmetry perturbations as described 
above. This effect can be explained in the following way. In the case of n-electronic 
bands we deal in fact with a half-filled zone of a metallic type and the zone states 
with energies close to the Fermi energy are nearly degenerate. Because of this, the 
correction to these levels is linear with respect to a small perturbation. Also, it 
should be noted that the contribution of these states into the total densities (30) 
is negligible (see Eq. (43)). As a consequence, a small perturbation of the symmetry 
properties of Eqs. (4) can result in a qualitatively wrong structure of the re-electron 
energy bands. This result can also be interpreted as the instability of the Hartree- 
Fock solution for re-bands of polyenes (see Ref. [18]). 
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